

Simulating storm surges and coastal flooding on unstructured grids using a fullycoupled modelling system

Xavier Bertin¹, Kai Li^{1,2} Aron Roland³ and Yinglong Zhang⁴

¹UMR 7266 LIENSs, CNRS/Univ. La Rochelle, E-mail: <u>xbertin@univ-lr.fr</u>
 ² Laboratorio Nacional de Engenharia Civil, Lisboa, Portugal
 ³ Technische Universität Darmstadt, Darmstadt 60483, Germany
 ⁴ Virginia Institute of Marine Science, Gloucester Point, Virginia, USA

La Rochelle

Why studying storm-induced coastal flooding?

➢Because they are among the most damaging natural disasters:

- In terms of fatalities

Example of Nargis 2008 in Myanmar:

- ~4 m surge flooded the Irriwaddy delta
- Over 140000 fatalities
- In terms material damages Katrina (2005/08):

New Orleans flooded. Credit Jeremy L. Grisham

Example of Katrina 2005 in the USA:

- -Locally > 9 m surge in the Mississipi delta
- More than 100 billions \$ damage

Modelling storm surges and coastal flooding

Storm surges are nowadays reproduced with a good accuracy (e.g. 10-20 % RMSE), mostly due to:

- Increase computationnal powed, allowing for higher resolutions
- Improved knowledge regarding wave-circulation-atmosphere interactions
- Improved representation of atmospheric forcing

>On the opposite, modelling of storm-induced flooding is scarce in the literature:

- Challenging multiscale problem, implying large grids with locally very HR
- Steep dikes and barriers cause very strong gradients
- The large variability of CFL conditions implies very robust numerical methods

>Unstructured grids appear more and more appealing to adress this multi-scale challenging problems

The studied storm

The Xynthia storm

 \rightarrow Minimum SLP of 970 mbar in the Bay of Biscay

 \rightarrow Max wind speed of 25-30 m/s in the Bay of Biscay

 \rightarrow Xynthia induced a surge up to 1.6 m in the Bay of Biscay.

 \rightarrow This surge peaked at the same time as a high spring tide, causing a massive marine flooding

The flooding associated with Xynthia

→ 47 peoples died → More than 2.5 billions \in damage

The storm surge modelling system

The spectral wave model WWMII (Roland et al., 2009)

-WWMII solves the Wave Action Equation (WAE) over unstructured grids:

$$\frac{\partial N}{\partial t} + \frac{\partial (C_{gx} + U)N}{\partial x} + \frac{\partial (C_{gy} + V)N}{\partial y} + \frac{\partial (C\sigma N)}{\partial \sigma} + \frac{\partial (C\theta N)}{\partial \theta} = \frac{S}{\sigma}$$

With $N(\sigma, \theta) = \frac{Es(\sigma, \theta)}{\sigma}$ and $S(\sigma, \theta) = S_{break} + S_{bfric} + S_{windgrowth} + S_{whitecap}$

- WAE solved by means of a fractional 3-step method (Yanenko, 1971):

1- Advection in geographic space solved first using the N-Scheme of Abgrall (2006).

2- Advection in spectral space is then solved using the finite diference method « Ultimate Quickest » (Leonard, 1991).

3- Integration of source terms (same as WWIII, Tolman 2009).

The hydrocynamic circulation model

 Moded SELFE (Zhang et Batista, OM 2008), developed to simulate baroclinic flows in 3D for a large range of spatio-temporal scales. Here used in 2DH barotropic mode:

$$\frac{\partial \zeta}{\partial t} + \vec{\nabla} \cdot \int_{-h}^{\zeta} \vec{u} \, dz = 0$$

$$\frac{DU}{Dt} = -fU + \alpha g \, \frac{\partial \hat{\psi}}{\partial x} - \frac{1}{\rho} \frac{\partial P_{Atm}}{\partial x} - g \, \frac{\partial \zeta}{\partial x} + \frac{\vec{\tau}_{Sx}}{\rho(\zeta+h)} - \frac{\vec{\tau}_{Bx}}{\rho(\zeta+h)} - \frac{1}{\rho(\zeta+h)} \cdot \left(\frac{\partial S_{xx}}{\partial x} + \frac{\partial S_{xy}}{\partial y}\right)$$

$$\frac{DV}{Dt} = fV + \alpha g \, \frac{\partial \hat{\psi}}{\partial y} - \frac{1}{\rho} \frac{\partial P_{Atm}}{\partial y} - g \, \frac{\partial \zeta}{\partial y} + \frac{\vec{\tau}_{Sy}}{\rho(\zeta+h)} - \frac{\vec{\tau}_{By}}{\rho(\zeta+h)} - \frac{1}{\rho(\zeta+h)} \cdot \left(\frac{\partial S_{yy}}{\partial y} + \frac{\partial S_{xy}}{\partial x}\right)$$

- The surface stress was modified to account for the sea-state through U*

$$\tau_{s} = \rho_{a} \cdot U_{*}^{2} - \tau_{ws} \quad \text{where} \quad \tau_{ws} = \int_{0}^{2\pi f_{\text{max}}} \int_{f_{\text{min}}}^{f_{\text{max}}} \frac{k}{\sigma} (\cos\theta, \sin\theta) S_{in}(\theta, \sigma) \partial\theta \partial\sigma$$

- SELFE uses a semi-implicit continuous Galerkin finite element method

-An ELM method for the advection ensures a good stability, even using large time steps

Implementation and forcing

-1,700,000 element unstructured grid

-Resolution ranging from 30000 m to 5 m

 \rightarrow SELFE is forced along the boundary by the 18 main harmonic constituents linearly interpolated from TUGO2010 (Pairaud et al., 2006)

 \rightarrow The atmospheric forcing originates from ARPEGE (Météo France, 0.1°/1h)

 \rightarrow WWMII is also forced with wave spectral originating from a WWIII regional model

Model validation during Xynthia

The cause for the abnormally large storm surge

Several authors have shown that the sea state can impact the surface stress significantly (Mastenbroak et al., 1993; Olabarrieta et al., 2012).

➢Here we show that the sea-state during Xynthia was characterized by a very large level of energy in high frequencies, which traduces young waves

➤This particulmar sea-state is explained by the unusual track of Xynthia from SW to NE, which restricted the fetch to a few hundred km

Modelling the flooding associated with Xynthia

Modelling the flooding associated with Xynthia

The impact of marine flooding on coastal water levels

Conclusions

 \rightarrow We improved and implemented a new storm surge modelling system which yields good predictions for tides, waves, surges and flooding, for Xynthia and for other storms.

 \rightarrow The analysis of model results revealed that the large storm surge during Xynthia originated from an Ekman transport, strongly enhanced by young waves.

→ Our simulations of flooding are quite relatistic and the analysis of the resultrs suggest that massive flooding can impact coastal water levels significantly.

Thank you for your attention!

Remerciements:

-Le CG 17
-Région Poitou Charente
-Fundação para a Ciencia e a Tecnologia
-Virginia Institutte for Marine Science (USA)
-S.H.O.M./REFMAR
-C.E.T.M.E.F.
-UMR LEGOS
-Météo France
-Centre européen ECMWF

Bertin, X., Bruneau, N., Breilh, J.F., Fortunato, A.B. and Karpytchev M., 2012. Importance of wave age and resonance in storm surges: the case Xynthia, Bay of Biscay. Ocean Modelling 42, 16-30.

Bertin, X., Li, K., Roland, A., and Bidlot, J.R., 2014. The contributions of short-waves in storm surges: two case studies in the Bay of Biscay. In revisions to Continental Shelf Research.

Bertin, X., Li, K., Roland, A., Zhang, Y., Breilh, J.F. and Chaumillon, E., 2014. A modelling-based analysis of the flooding associated with Xynthia. Submitted to Coastal Engineering.