Unstructured Orthogonal Meshes for Modeling Coastal and Ocean Flows

Olga Kleptsova

1

Delft University of Technology

Outline

- Summary of the numerical method
- North Sea tidal model
- Indian Ocean Tsunami simulation

Delfin: scheme properties

- Orthogonal unstructured C-grid
- **Solution** Geopotential z- layer coordinates
- Casulli and Walters (2000):
 - Semi-implicit finite volume method
 - Advection and Coriolis terms are treated explicitly
- Eulerian advection

C-grid discretisations

- Only normal components of velocity are solved for
- Tangental velocity components are interpolated
- Interpolation may introduce accuracy and stability problems (Espelid et al, 2000)

$$\frac{d}{dt} \begin{bmatrix} \mathbf{u} \\ \eta \end{bmatrix} = \begin{bmatrix} F & P \\ C & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \eta \end{bmatrix}$$

- Propagation matrix of semi-discrete system should only have imaginary eigenvalues (Espelid et al, 2000).
 - Skew-symmetric matrix $(A^T = -A)$
 - Similar to skew-symmetric (D⁻¹AD is skew-symmetric.)

- Perot (2000): Velocity reconstruction for 2D Navier-Stokes equations:
 - Cell velocity vector: $A_c \mathbf{u}_c = \sum_f s_{f,c} l_f u_f \mathbf{r}_f$
 - Face velocity vector: $\mathbf{u}_f = \sum \delta_{f,c} \frac{d_{f,c}}{d_f} \mathbf{u}_c$

where

- - \square A_c face area,
- Image: $\mathbf{r}_f = s_{f,c} d_{f,c} \mathbf{n}_f$ position vector pointing from cell to face centre

Perot (2000): No energy conservation in the presence of varying bottom topograthy

• Ham et al (2004):
$$\mathbf{u}_f = \sum_c \delta_{f,c} \frac{h_c}{h_f} \frac{d_{f,c}}{d_f} \mathbf{u}_c$$

- Espelid et al (2000,2004*): $A_{c}\mathbf{u}_{c} = \sum_{f} s_{f,c} l_{f} \frac{\sqrt{h_{f}}}{\sqrt{h_{c}}} u_{f}\mathbf{r}_{f}, \ \mathbf{u}_{f} = \sum_{c} \delta_{f,c} \frac{d_{f,c}}{d_{f}} \frac{\sqrt{h_{c}}}{\sqrt{h_{f}}} \mathbf{u}_{c}$
- Kleptsova et al (2009): Coriolis tilting test case shows growth of energy using the above

Perot's reconstruction is based on the identity

$$\int_{\Omega} \omega dV + \int_{\Omega} \mathbf{r} (\nabla \cdot \omega) dV = \int_{\partial \Omega_f} (\omega \cdot \mathbf{N}) \mathbf{r} dA$$

It is valid for any

- **9** polygonal volume Ω with piecewise smooth boundary $\partial \Omega$
- \blacksquare continuously differentiable vector field ω
- **p**osition vector $\mathbf{r} = \mathbf{x} \mathbf{x_0}$ with an arbitrary origin $\mathbf{x_0}$.

• (2)
$$\equiv 0$$
 for $\mathbf{u} = [u, v, w]$, but not for $\bar{\mathbf{u}} = \frac{1}{h} \int_{b}^{\eta} \mathbf{u} dz$

Use the identity with $\omega = \mathbf{u}$

$$\int_{\Omega} \mathbf{u} dV = \int_{\partial \Omega_f} (\mathbf{u} \cdot \mathbf{N}) \mathbf{r} dA$$

Integrate over a (prismatic) cell/water column

$$h_c A_c \mathbf{u}_c = \sum_f s_{f,c} h_f l_f u_f \mathbf{r}_f + A_c \left(w_t \mathbf{r}_t - w_b \mathbf{r}_b \right)$$

Where r_t, r_b – position vectors pointing from the cell center to the centers of the top and bottom faces

Note: If r_t, r_b are not strictly vertical, w_b, w_b may contribute to u^{xy}_c. In the case of w interpolated from the continuity equation, this may make the matrix not skew-symmetric.

Advection discretisation

- We use an Eulerian advection scheme by Kleptsova et al (2010)
- Multi-layer variant of scheme by Kramer and Stelling (2008)
- Momentum conservative
- Time step limitations

Z-layer discretization

Kleptsova et al (2010):

z-layer + C-grid \Rightarrow Accuracy problem in advection dominated flows

The same holds for Coriolis dominated flows

Z-layer discretization

- Stepwise discontinuous representation of the topography and free surface
- Variable thickness of the bottom layer
- Vanishing top layer

Kleptsova et al (2010): in absence of bottom friction

- Momentum equation should be identical for all of the layers
- Column to columside water depth ratio should be the same as cell to face height ratio

- Boundaries are coincident with DCSM98
- Bathymentry is that of DCSM98
- Coarse grid:
 - 131 thousand cells
 - 1-20 km resolution
 - Orthogonal variant of Ham(2006) grid
- Fine grid:
 - 690 thousand cells
 - 10m-20km resolution

Coastlines are provided by Gerard Dam, Svasek Hydraulics

- 27 tidal points where spectrum is specified
- Only diurnal lunar (M2) component is considered
- Data for 36 stations were available for comparison

(Loading northsea.mov)

- Latitude 55°
- Timestep 5min/10min for fine/coarse grid
- Linear dynamics
- Amplitude error < 20cm for 72% (26 of 36) stations
- Phase error < 10° for 58% (21 of 36) stations

Model forced with:

- semidiurnal tides M2, S2, K2 and N2,
- diurnal tides K1, O1, P1, Q1
- The shallow water tides M4, M6 were generated on the shelf

Model forced with:

- semidiurnal tides M2, S2, K2 and N2,
- diurnal tides K1, O1, P1, Q1
- The shallow water tides M4, M6 were generated on the shelf

15

10

5

Spring-neap variation of the water level at the Harlingen station

Flood-ebb asymmetry at Harlingen station

B. Sinha and R. Pingree (1978): Stratification parameter $S = \log_{10} \left(\frac{h}{C_d |u_s|^3 10^4} \right)$

- $C_d = 0.0025$
- \blacksquare S > 2- stratified, S < 1- well-mixed

Black: neap tide

Gray: spring tide

- Major difficulty lies in determining of a precise fault mechanism
- A number studies has been done using GPS and seismic data
- Co-seismic displacement data are validated using the results of tsunami models
- Results are compared to a number of independent data sources

Model 1: GPS invertion, Hoechner et al. (2008)

- Rupture velocity 3.7km/s for the first 200km, when 2km/s
- **D** Total rupture time 10min
- Model 2: Coastal coseismic vertical deformations and wave forms at tide gauges, Tanioka et al. (2006)
 - **P** Rupture velocity 1.7 km/s
 - **D** Total rupture time 12min

(Loading tsunami.mov)

Site	Coordinates	Sampling interval of tide gauge (min)	Arrival times of the leading incident tsunami waves (in minutes since the earthquake started)		
			Tide gauge	Model 1 error	Model 2 error
Sibolga, Indonesia	01.75° N; 98.75° E	3	107	-24	-27
Tuticorin, India	08.75° N; 78.20° E	6	205	8	15
Vizakhapatnam, India	17.65° N; 83.28° E	5	156	-15	-11
Colombo, Sri Lanka	06.93° N; 79.83° E	2	170	-9	-2
Male, Maldives	04.18° N; 73.52° E	4	195	-5	1
Diego Garcia, UK	07.30° S ; 72.38° E	6	226	-16	-8
Hanimadhoo, Maldives	06.77° N; 73.18° E	2	211	-15	-9
Gan, Maldives	00.68° S ; 73.17° E	4	197	-7	3
Port Blair, India	11.68° N; 92.77° E	2	15	8	-

(Loading flood.mov)

- Two initial sea surface displacement fields were compared
- There are still uncertainties in the source description
- Satellite altimetry, inundation measurements, arrrival data are valuable data sources
- It is not enough to compare only to one data source

