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Columbia River Estuary 2

Unigue estuary

e High river flow 46N -

e Strongtides

A4°N|- ,

e Eastern boundary

current

Challenging to model
e Strong currents (>3 m/s)
e Sharp density gradients

e Complex bathymetry
—  Wetting-drying
e Narrow continental shelf

—  Depthupto 2.8 km
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SELFE — AUV data comparison 3
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Current circulation model: SELFE

Key limitations:
e SELFE is low order

— Velocity plnc, Elevation p1, Tracers p0 ° Z v
L

— Low order quadrature rules A M;

— Low order time integration A oT,S

— Numerical dissipation

e SELFE is a low-level Fortran code
— Fixing discretization implies rewriting most of the code
— Laborious, error prone

-> Develop an alternative model using most prominent
recent technology




Model development is risky business 5

e |nitial choices of methods affect implementation
— May render code base difficult to change later on

— Especially for highly optimized code

e Solution: software platform that offers
— Flexibility
e Allow massive changes in model formulation
e Without excessive amount of work

— No compromisesin computational efficiency
e Targeting current and emerging supercomputer technology




High-level abstractions and Automatic Programming

e High-level abstractions
— Intuitive and flexible interface
— Rapid model development
— Typically result in slow code

e Automatic Programming

— Generates efficient low level (C) code for executing critical
routines

— Optimized, application specific code
— Amortizes computational cost of high-level interface




Firedrake FE modeling framework

e Universal Form Language UFL (FENiCS)
— Symbolic language for defining/manipulating weak forms

e FENICS form compiler FFC (FENICS)

— Compiles forms to efficient C code > | |
Automatic Programming
e PyOP2

— Evaluates forms on unstr. mesh and assembles systems
— Hardware agnostic (MPI, OpenMP, OpenCL, CUDA)

e Problem solved with PETSc
— Extremely flexible solver library

e Firedrake (firedrakeproject.org)

— Generic FE solver framework

& Firedrake




Advantages 8

e User can change
— Equations (add/remove/change terms)
— Spatial discretization (elements, order, quadratures)
— Time integration (implicit/explicit, RK/IMEX)
— Solver options (lin/nonlin solvers, preconditioners)
— Target hardware (MPIl/OpenMP/GPU)

e Takes literally minutes to change formulation

e Generates efficient code




Example: Linear shallow water equations

mesh = Mesh('stommel square.msh')

U = VectorFunctionSpace(mesh, 'CG', 2) # for uv
H = FunctionSpace(mesh, 'CG', 1) # for eta
W = MixedFunctionSpace([U, H])

w, v = TestFunctions (W)

uv_tri, eta_tri = TrialFunctions (W)

sol old = Function(W)

sol new = Function(W)

uv, eta = split(sol old)

g = Constant(9.81); h = Constant(1000.0); dt = 3.5

a = (1.9/dt)*(inner(w, uv_tri)+inner(v, eta_tri))*dx
L = g*inner(w, grad(eta))*dx -h*inner(uv, grad(v))*dx
solve(a == L, sol new,

solver parameters={'ksp type':'fgmres'})




Example: Switch to Discontinuous elements

H = FunctionSpace(mesh, 'CG', 1)
pres_grad = g*¥inner(w, grad(eta))*dx
e Change elements
e Integrate terms by parts
e Add interface terms with stabilization
H = FunctionSpace(mesh, ‘DG', 1)

pres _grad = -g*inner(div(w), eta)* dx
pres_grad += g*inner(jump(w,n), avg(eta))* dsS




Example: use openMP instead of MPI

mpiexec ... python script.py

e Set environment variables

export PYOP2_ BACKEND=openmp
export OMP_NUM THREADS=8
mpiexec ... python script.py

e Will re-compile the code for openMP




Example: Adjoint model

Assume you have defined a system
F =0, F=F(...,p,...)

F can be differentiated versus any arguments

dFdp = derivative(F,p)

dFdp can be evaluated as any other form
Leads to code optimized to solve the gradient




2D shallow water : Stommel test case

Elevation
0.03 0 0.03 0.05
I\IIII‘I\I |\||\|\|||

T

-0.04 0.06

e 1000 km x 1000 km basin

e 1kmdeep

e |Impermeable boundaries
e Beta-plane Coriolis approx.

e Zonal wind stress =>
Geostrophic gyre

e |ntensifies on western
boundary

e Shallow water equations
e Linear / Non-linear




2D shallow water : Stommel test case

3 Linear Stommel test case

- 10 T

Spatial convergence test 1.92
e Linear equations
£

e pldg-p2 elements S Q2 S o
e Crank-Nicholsontime =
integration =

. o1 ® ]
e Elementsizes: g’
60km to 5km
e Secondorder convergence
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Simple run-time comparison

e Linear Stommel test case
— Discontinuous elements, pldg-pldg
— 26k element mesh

— Forward Euler time integration, dt =3.5s
— Time 1000 iterations on 1 CPU

e SLIM :89.8 s

— No linear system to solve (precomputed inv. mass matrix)

e Firedrake implementation: 84.5 s
— Solver: PETSc with block Jacobi preconditioner




Application to Columbia River

e Shallow water equations
e Coriolis forcing

e (Quadratic bottom friction
e Wetting-drying

e p2-plelements

e 3" order DIRK time
integration

e 76k triangles, 40k nodes
Forcings
e River flux from data

— Columbia, Willamette

e (QOcean boundary
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Application to Columbia River 17
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Elevations at Hommond (lower estuary)
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Comparison of elevations at St Helens (river)
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Goal: Three dimensional coastal model

e 3D prismatic mesh

— Vertically moving mesh to track free surface

— Arbitrary Lagrangian Eulerian formulation
e Wetting-drying
e Strict volume and tracer mass conservation
e Monotonictracer advection scheme
e Generic length scale turbulence model
e Explicit/Semi-Implicit time integration




Conclusions

e Columbia River estuary application is demanding
— We are seeking a new regional circulation model

— Ability to capture sharp gradients is critical
(see Baptista talk tomorrow)

e Flexibility and computational efficiency

— High-level abstractions + automatic programming
e Firedrake project looks promising
e 3D tests to be done / in progress
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